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The formation of convective cells in a fluid between two horizontal rigid 
boundaries with time-periodic temperature distribution is studied by the use 
of the Floquet theory. Numerical results for the critical Rayleigh number are 
given for a Prandtl number of 0.73 (air) and for various values of the frequency 
and magnitude of the primary temperature oscillation. Some numerical results 
for a Prandtl number of 7.0 (water) are also given. The most striking feature of 
the results is that the disturbances (or convection cells) oscillate either syn- 
chronously or with half frequency. 

1. Introduction 
In  numerous stability problems in mechanics, oscillation of the basic state 

has been found sometimes to have a stabilizing and sometimes a destabilizing 
effect, the latter often being associated with the reduction of the problem to 
Mathieu’s equation. Some pertinent references in the field of fluid mechanics are 
Benjamin & Ursell (1954), Rosenblat (1968), Yih (1968), and the experimental 
work of Donnelly ( 1964). 

The present work concerns BBnard convection with a time-dependent basic 
state. Three recent papers on that subject are those by Gresho & Sani (1970), 
who studied the effect of time-variable gravity on thermal convection, and 
Venezian (1969), on convection in an unsteady temperature field when the 
amplitude of the unsteady part is assumed small, and that of Rosenblat & 
Herbert (1970) on the same problem at low modulation frequency, but with the 
modulation amplitude not small. In  this paper we study the marginal stability 
of a fluid layer with a symmetric temperature gradient which contains an un- 
steady part. Neither the amplitude nor the frequency of this unsteady part 
is assumed small. Solutions are obtained by a method of expansion in orthogonal 
functions akin to that of Chandrasekhar (1954). A similar investigation has been 
very recently reported by Rosenblat & Tanaka (1971); they use a slightly 
different basic temperature field, and Galerkin’s method. The most striking 
feature of our results is that the disturbances, at neutral stability at  least (and 
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probably at  instability), are either synchronous with the primary temperature 
field or have half its frequency. A similar but less extensive result was obtained 
by Gresho & Sani. 

2. Primary temperature distribution 
Consider a layer of fluid between two fixed plates, one at  xg = + i d  and the 

other a t  x3 = - $d, xl, x2 and xg being Cartesian co-ordinates with x3 measured 
in the direction of the vertical from the plane mid-way between the plates. The 
temperature of the upper plate is kept at  Tl + T2 cos w* t ,  and that at  the lower 
plate is maintained a t  To- T,coso,t, t being the time and w* being equal to 27~ 
times the frequency of the periodic temperature fluctuation at  the lower plate. 

Define the following dimensionless variables : 

(1) 1 = 1K/d2, (x, Y, = x2,  x3)t 

w = o , d 2 / K ,  8 = (!/?-q)/(To-Tl), 
where K is the thermal diffusivity. Then the dimensionless equation governing 
the distribution of the primary (or mean) temperature T is 

and the boundary conditions are 
aepr = a w / a Z 2  (2) 

8 = I-bcoswT at z = -4, (3) 
8 =  bcoswr at z =  g, (4) 

with b = T2/(To-Tl). ( 5 )  

8 = - -  $--  z +bP(z,r), (6 )  

(7) 

and p = (&up, p' = *p. (9) 

The solution of (2) with the boundary conditions (3) and (4) is 

where P(x, r )  = (B  cos wr - C sin w r )  sinh pz cos pz 

with B = - sinhp' cosP'/(sinh2p' + sin2p'), C = - B tanp'cothp', (8) 

If po is the density at temperature To and the prevailing pressure, the density p 

- (C cos wr + B sin 07) cosh pz sin pz, 

at any temperature not too different from To is 

where a is the thermal expansion coefficient of the fluid, which is assumed 
incompressible. The Boussinesq approximation will be made. 

P = Po[1 - a(T - To)], (10) 

3. Differential system governing stability 
We shall now disturb the fluid and see whether the disturbance will grow. The 

temperature disturbance will be denoted by T' and the velocity by (ul, uz, u3). 
Then (see, for instance, Pellew & Southwell 1940), with the substitutions 
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a being the wavenumber of the BBnard cells, the linearized Boussinesq equations 
reduce to 

- - - (D2 - a 2 ) ]  ( 0 2 -  a2) w = - Ra28, 

[$-(D.-a2)] 8 = -[-l+bP’(z-7)]w, (15) 

in which R = ga(To- TI) d 3 / ~ v  = Rayleigh number, CT = V / K  = Prandtl number, 
D = a/az and P’(z, 7) = DP(z, 7). The boundary conditions are 

w = O = D w  at z = $ & ,  
8 = 0  a t  z = + - & .  

4. Method of approach 
We note, first of all, that B’(Z,T) is an odd function of z and hence P’(z,T) is 

an even function of z. Inspection of (la)-( 17) reveals that the eigenfunctions can 
be divided into two categories: those which are even functions of z and those 
which are odd functions of z .  All previous investigations of convection cells 
have shown that disturbances corresponding to even eigenfunctions and hence 
having an odd number of cells in the x direction are more unstable than those 
corresponding to odd functions. Of these the single-celled disturbance is the 
most unstable. We therefore investigate only the stability of disturbances with 
even eigenfunctions. 

Keeping in mind the boundary conditions on 8 and w, we can expand 0 in 
a series in cos ( 2 n  + 1) n z  and w in a series in $,(z), which is defined by the system 

(02-a2)2$, = cos(2n+ l)nz,  
(18) 1 $,( -Q) = 0 = 0$,( -+), $,(Q) = 0 = D$,($). 

$, = P,coshaz+&,zsinhaz+c~ cos [(2n+ I)m], 

The solution of (18) is 

(19) 

(20)  i where P, = - ( - l), (2% + I )  ncz, sinh (&)/(a + sinha), 
&, = ( -  1)n2(2n+1)nc2,cosh(&a)/(a+sinha), 
c, = 1/[(212+ 1 ) 2 7 7 2 + a 2 ] .  

We now expand 8 and w as follows: 
00 

8 = C B,(T) cos [ (2n  + 1) 7721, 
n = O  

m 

n=O 
w = c An(T)$,k). 

Substituting (21)  and (22)  into (14) and (15), multiplying the resulting equations 
by cos [(2n + I) nz] and integrating between z = f + gives 

2 “  - 
gn=O 

<m,AA(7) -A,(?-) = - Ra2B,(7) (m = 0, 1,2,  . . .), (23)  

m 
= - 2  C ( ~ , ~ ~ , + b h , , c o s w ~ + b ~ , , s ~ n ~ ~ ) ~ , ( ~ )  (m = 0,1 ,2 ,  ...), (24) 

n = O  

1 0  F L M  54 
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where 

6, = ( -  l)m+n8u(2n+ 1) (2m+ i)n2c~e,cosh2(~a)/(a+sinha)-+c,S,,, (25) 

S,, being the Kronecker delta, and A,, and tmn are defined by 

A,, cos w7 + (,, sinwr = F'(z, r )  cos [(Zm + I )  77x1 $,(x) dx. (26) 

When expanded, (26) gives 

t 

4 
A,, = [(B-C)coshpxcospz- (B+C)sinhpzsinpx] 

tmn = - p j  [(B + C) cosh pz cospz + (B  - C) sinhpz sinpx] 

x cos[(2m+ 1)nz]4n(z)dx,  (26a)  
B 

-4 
x c 0 ~ [ ( 2 ~ + l ) n z ] ~ , ( z ) d z .  ( 2 6 b )  

We shall now study truncated versions of the infinite set of equations (23) 
and (24) determining A,(7) and B,(r). If A ,  and B, remain small for all times 
the Auid is stable; if they grow with time in the long run (that is, cycle after 
cycle of period 2n/w,), the fluid is unstable. We shall attempt only to determine 
the Rayleigh number R for neutral stability. 

5.  Analysis 
Since the coefficients in (23) and (24) are either constant or periodic functions 

of 7 with (dimensionless) period 7,, = 2n/w, the Floquet theory applies. (See Ince 
1944, pp. 381-382; Coddington & Levinson 1955, pp. 78-81.) The outstanding 
result of the Floquet theory is that the solution must have the form ePiTP(7), 
where P(7) is either a periodic function of 7 with period 70 or a sum of terms each 
of which is the product of a polynomial in r (in particular a constant) and such 
a periodic function. In  all cases the vanishing of the real part ,ulr of ,ul evidently 
marks the stability boundary. Our aim is to determine the conditions under 
which,ulr = 0. 

If p l i ,  the imaginary part of ,ul, is zero, then the disturbance is synchronous 
with the unsteady part of the mean temperature field. If ,uliro is equal to n 
or -n, then the disturbance has frequency half that of the unsteady mean 
temperature field. Numerical calculation will show that the most unstable dis- 
turbance either is synchronous or has half the frequency of the mean temperature. 
Values of pliro other than zero and k n  were searched for, though not ex- 
haustively, but none were found. 

We now consider the 2M equations obtained by putting m = 0,1, .. ., M -  1 
in (23) and (24). For convenience of exposition, let us denote 2M by N .  In 
principle the N equations with N unknowns can be combined into one differential 
equation of order N ,  with N independent solutions, which we shall denote by 
G,(7) (n = 1, 2, . . ., N ) .  Let us give G,(r) the property 

where 
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Then, since the coefficients of the Nth-order differential equation have period 7,, 

N 

m= 1 
G,(7+70) = z %wrAGm(7)7 

and we have CC,, = GLm-')(7,,). 
If we seek a solution U(7) with the property 

(29) 

(30) 

U ( T + T ~ )  = sU(T) ,  (31) 

we can write 

Substituting (29) and (32) into (31), we have the secular equation 

det { G ~ - ' ) ( T ~ )  - sd,,) = 0, (33) 
which determines s. It is evident that 

s = ePiTo.  (34) 

We thus have a means of determining pI. 
For the first approximation we retain only the first term in expansions (21) 

and (22); equations (23) and (24) then contain only A ,  and B,. By eliminating 
B, between them, we obtain 

(35) 
1 A,,(?-) = 0. 

For the second approximation we have four simultaneous first-order equations 
or two second-order simultaneous equations, which we shall not present, because 
they are rather lengthy. 

If desired, higher order approximations can be carried out in much the same 
way. Numerical computations have been carried out for a Prandtl number? 
cr = 0-73 (air) but to the second approximation only. We are also in possession 
of asymptotic solutions of (35) and of the two second-order equations in the 
second approximations for large values ( > 100) of the Prandtl number u. How- 
ever, for these high values the mean temperature varies a good deal with the 
co-ordinate x and the validity of a mere second approximation becomes question- 
able. For this reason we do not present these solutions. 

6. The case TI = To 
Before we present the results of numerical calculation we wish to discuss the 

case Tl = To, which has also been investigated. The primary temperature dis- 
tribution is still governed by (2), except that T, is now used as the temperature 
scale instead of To - TI, so that e = (T - T,JIT,. (36) 

With the boundary temperatures maintained as before (see the beginning 

6 = & C O S W 7  a t  x = +$. (37) 
t We also have some results for cr = 7.0 (water). See table 2. 

10-2 
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The solution of (2) with (37) is 

with F(z ,  T) given by (7).  
The differential equations governing stability are still (14) and (15), except 

that the right-hand side of (15) is to be replaced by - F‘(z, 7) w, and the Rayleigh 
number R is now defined by 

We again use the expansions (21) and (22)) and once more obtain (23). Equation 
(24) is now replaced by 

1 

8 = R(z,7), (38) 

R = g a T 2 d 3 / ~ ~ .  (39) 

m 
Bk(7) + - Bm(7) = - 2 2 (Amn cos w7 + Emn sinw7) A,(7) (m = 0, I ,  2, . . .), 

Crn n=O 

(40) 
where cm,, c,, A,, and gmn are again as given in $4. 

The equations for the various stages of approximation are very similar to 
those for the case To + T,, and the rest of the analysis is identical to that given 
in $ 5  for the case To + T,. 

7. Discussion of results 
The numerical computation was done by the Runge-Kutta method using 

‘double precision’, with a UNIVAC 1108 computer. The step size h chosen was 
small enough for ,ul in (34) to be accurate to  the third significant digit at  least. 

Since for the case To = T, there is one less parameter to consider, i.e. the 
parameter b does not appear, it  is possible to obtain a relationship between 
the critical Rayleigh number R, (note that R is based on T,, not 2T2) and the 
corresponding critical wavenumber a, in terms of functions of the dimensionless 
frequency w of the oscillating primary temperature field. The critical Rayleigh 
number is the minimum value of R as a function of the wavenumber a for a fixed 
value of w .  Figure 1 shows R, and a, as functions of w.  In  this figure the symbol 
S signifies ‘synchronous) and the symbol H ‘half-frequency’. On and above an 
S curve the disturbances are synchronous, and on and above an H curve the 
disturbances have the frequency &. We have found that each of the cusps in 
the R,-w curve is really the intersection of an H curve with an S curve, both 
of which can be continued beyond the intersection. Thus in the area above an 
H curve there are also synchronous disturbances, but disturbances with half- 
frequency can be expected to be more unstable. Similarly, above an S curve 
there are disturbances with half-frequency, but synchronous disturbances are 
more unstable. The critical wavenumber appears to be discontinuous from the 
a,-w curve only because we do not continue the S curves and the H curves 
beyond their intersections. The ac-u curves are also composed of S curves and 
H curves. 

Below w = 6 the arcs corresponding to the S curves and H curves, as indicated 
by the computed points, seem to have rather low amplitudes. That is to say, 
they do not sag much below the curve passing through their mean positions. 
For this reason we use a broken line to indicate the mean position of computed 
points only. The exact form of the R,-w curve must be very near this broken line. 
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FIGURE 1. Variation of R, and a, with w for r = 0.73 (air) and To = TI. X signifies 
'synchronous ' and H signifies 'half-frequency ', for the curve below. 

We note that the existence of synchronous and half-frequency disturbances 
was already indicated in figure 4 of the paper of Gresho & Sani (1970), in which, 
incidentally, the vertical co-ordinate should be R, x 
(which is merely a misprint). 

At high values of w ,  the primary temperature field has at any instant many 
'waves' in the z direction, and the validity of an approximation taking into 
account only A,, A,, B, and B, becomes questionable. However, up to w = 20 
(see figure 1) examination of the expression for F(z ,  7) shows that the primary 
temperature has about one wave in the direction of z ,  since 

instead of R, x 

p/n = (w/2n2)4 = I for o = 20. 

Thus 4 , ( x )  and 4 B ( z )  are quite sufficient to give a good approximation to the 
eigenfunction. 

We now turn to the case To + TI. Figure 2 shows the variation of the critical 
Rayleigh number R, with b for r = 0.73 (air) and w = 5. We use a dashed line 
t o  show the results of the first approximation and a solid line to show the results 
of the second approximation. We have marked with S (synchronous) and H 
(half-frequency) the first two arcs only, to avoid confusion, since the positions 
of the X curves and H curves shift from the first to the second approximation. 
For each approximation the X curves alternate with the H curves. 

We note that in the mean the results of the first and second approximations 
do not differ very much, although the shift of the cusps is very evident. It is 
interesting that, as b increases from zero, at  first (for small b)  the unsteady part 
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25 

10 

of the primary temperature field is stabilizing. This agrees largely with the 
findings of Venezian (1969), who found a (very weak) destabilizing effect of the 
unsteady part of the primary temperature only in one special case of cr, and 
treated both boundaries as ‘free’. It also agrees with Donnelly’s (1964) findings 
for the related problem of Taylor vortices that oscillation of one cylinder can 
only stabilize fhe Couette flow. Beyond b = 1, however, the effect of this part is 
generally destabilizing. 

Figure 3 is similar in every respect to figure 2, with the only difference that 
the R is for neutral stability at  a = 3.1 17 instead of a = a,. Hence the R is a little 
more than the R, in figure 2 .  The fact that they do not differ by very much shows 
that a, is never very different from 3. 

For both figures 2 and 3, the value of R, or R at b = 0 is 1715.08 for the first 
approximation and 1707.94 for the second, both of which correspond to a = 3.1 17. 
These figures agree, as they should, with Chandrasekhar’s (1961) values. With 
this in mind it is interesting to mention that Gresho & Sani (1970) used 
Galerkin’s method and obtained (for their problem and for w = 0, which corre- 
sponds to the BBnard problem and to b = 0 in our study) for R, the value 1825 
at a = 3.117 with one trial function, and the value 1710.1 at a = 3.117 with five 
trial functions. The ‘exact’ value is 1707-8. 

In  view of the fact that the R,-b or R-b curves in figures 2 and 3 are smooth 
for b < 0.6, we have computed the R, values for various values of b < 4.5, for 
values of w other than 5, and for (r = 0-73 (air). The results are given in table 1.  
For cr = 7 (water) table 2 gives R, and ac for o = 10 and various values of b. Both 
tables show that in the range of b indicated the unstable part of the primary 
temperature field is stabilizing. 

It remains to compare our results with those of Rosenblat & Tanaka (1971). 
If one compares their figures 3 and 4 with our figures 2 and 3, it appears that 
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FIGURE 3. Variation of R at neutral stability with b at u = 0.73, w = 5 and a = 3.117. 
- _ _  , first approximation; - , second approximation. S signifies synchronous' and 
H signifies 'half-frequency', for the curve below. S and H alternate for the curves to 
the right. 

blo 
0 
0.5 
0.75 
1.0 
1.25 
1.5 
2.5 
4.5 

1.0 
1715.08 
2040 
2450 
2382 
2253 
2113 
1592 
1034 

2.5 
1715.08 
2037 
2403 
2352 
2227 
2098 
1600 
1059 

5.0 
1715.08 
2020 
2450 
2308 
2190 
2068 
1584 
1043 

10.0 

1715.08 
1976 
2354 
241 1 
2130 
2005 
1526 
1021 , 

TABLE 1. Variation of the critical Rayleigh number R, with the fluctuation amplitude b 
and frequency o for (T = 0.73 (air); first approximation. 

b 
0 
0.5 
1.0 
2.5 
5.0 

Rc a c  

1715.08 3.117 
1764 3- 1 
1951 3.0 
4048 4-0 
2650 3-8 

TABLE 2. Variations of the critical Rayleigh number R, and the critical wavenumber a, 
with b at (T = 7.0 (water) and o = 10; first approximation. 

their R, increases monotonically with 6 (our b) ,  whereas for b > 0.6 our results 
show loops of alternating H curves and 8 curves. Possibly, for their temperature 
profile, R, is monotonic with 6 for e < 1. It is also possible that their calculation 
followed the initial AS curve even after its intersection with an H curve. Up to 
b = 0.6, our R, increases with b (as does theirs with e ) ,  and is of the same order 
of magnitude as their R,. In comparing our R, with theirs, it  must be kept in 
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mind that our temperature profile is different from theirs (since only their 
bottom boundary condition involves oscillating temperature, the top tempera- 
ture being steady), and that our R, should not be the same as theirs even if all 
the other parameters ( w ,  b,  etc.) were equal in the two cases. 

Our results given in table I can be compared with the results of Rosenblat & 
Tanaka (1971) given in their figures 1 and 2. Although for b = 0.5 our R, de- 
creases monotonically with w ,  in agreement with their figure 1 (for e = 0.4), 
forb = 1 (corresponding to their e = 1)  our R, has a minimum near w = 5, whereas 
the R, values shown in their figure 2 decrease monotonically with the frequency. 
Taking a look at  our figures 2 and 3, we think the qualitative disagreement comes 
from the fact that at  b = I we already encounter the second H curve, whereas 
in their case either e = 1 is still in the region of the first S curve (for their 
temperature profile) or in the calculation they have followed their first X curve 
beyond an intersection with an H curve. 

In  brief, our results do not necessarily contradict those of Rosenblat & Tanaka. 
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